Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Hematol., Transfus. Cell Ther. (Impr.) ; 45(1): 7-15, Jan.-Mar. 2023. tab, graf
Article in English | LILACS | ID: biblio-1421549

ABSTRACT

Abstract Introduction Magnetic resonance imaging (MRI) T2* technique is used to assess iron overload in the heart, liver and pancreas of thalassaemic patients. Optimal iron chelation and expected tissue iron response rates remain under investigation. The objective of this study was to analyse serum ferritin and the iron concentration in the heart, liver and pancreas measured by MRI T2*/R2* during regular chelation therapy in a real-world cohort of patients with thalassemia. Methods We evaluated thalassaemic patients ≥ 7 years old undergoing chelation/transfusion therapy by MRI and assessed serum ferritin at baseline and follow-up from 2004-2011. Results We evaluated 136 patients, 92% major thalassaemic, with a median age of 18 years, and median baseline ferritin 2.033ng/ml (range: 59-14,123). Iron overload distribution was: liver (99%), pancreas (74%) and heart (36%). After a median of 1.2 years of follow-up, the iron overload in the myocardium reduced from 2,63 Fe mg/g to 2,05 (p 0.003). The optimal R2* pancreas cut-off was 148 Hertz, achieving 78% sensitivity and 73% specificity. However, when combining the R2* pancreas cut off ≤ 50 Hertz and a ferritin ≤ 1222 ng/ml, we could reach a negative predictive value (NPV) of 98% for cardiac siderosis. Only 28% were undergoing combined chelation at baseline assessment, which increased up to 50% on follow up evaluation. Conclusions Chelation therapy significantly reduced cardiac siderosis in thalassaemic patients. In patients with moderate/severe liver iron concentration undergoing chelation therapy, ferritin levels and myocardium iron improved earlier than the liver siderosis.


Subject(s)
Humans , Child , Thalassemia , Iron Overload , Chelation Therapy
7.
Rev. bras. hematol. hemoter ; 35(6): 428-434, 2013. tab, graf
Article in English | LILACS | ID: lil-699988

ABSTRACT

In the absence of an iron chelating agent, patients with beta-thalassemia on regular transfusions present complications of transfusion-related iron overload. Without iron chelation therapy, heart disease is the major cause of death; however, hepatic and endocrine complications also occur. Currently there are three iron chelating agents available for continuous use in patients with thalassemia on regular transfusions (desferrioxamine, deferiprone, and deferasirox) providing good results in reducing cardiac, hepatic and endocrine toxicity. These practice guidelines, prepared by the Scientific Committee of Associação Brasileira de Thalassemia (ABRASTA), presents a review of the literature regarding iron overload assessment (by imaging and laboratory exams) and the role of T2* magnetic resonance imaging (MRI) to control iron overload and iron chelation therapy, with evidence-based recommendations for each clinical situation. Based on this review, the authors propose an iron chelation protocol for patients with thalassemia under regular transfusions.


Subject(s)
Humans , beta-Thalassemia , Blood Transfusion , Chelation Therapy , Clinical Protocols , Iron Chelating Agents , Iron Metabolism Disorders , Magnetic Resonance Imaging
8.
Einstein (Säo Paulo) ; 9(2)abr.-jun. 2011. tab, mapas
Article in English, Portuguese | LILACS | ID: lil-594925

ABSTRACT

Objectives: To evaluate the use of magnetic resonance imaging in patients with Beta-thalassemia and to compare T2* magnetic resonance imaging results with serum ferritin levels and the redox active fraction of labile plasma iron. Methods: We have retrospectively evaluated 115 chronically transfused patients (65 women). We tested serum ferritin with chemiluminescence, fraction of labile plasma iron by cellular fluorescence and used T2* MRI to assess iron content in the heart, liver, and pancreas. Hepatic iron concentration was determined in liver biopsies of 11 patients and the results were compared with liver T2* magnetic resonance imaging. Results: The mean serum ferritin was 2,676.5+/- 2,051.7ng/mL. A fraction of labile plasma iron was abnormal (> 0,6 Units/mL) in 48/83 patients (57%). The mean liver T2* value was 3.91 ± 3.95 ms, suggesting liver siderosis in most patients (92.1%). The mean myocardial T2* value was 24.96 ± 14.17 ms and the incidence of cardiac siderosis (T2* < 20 ms) was 36%, of which 19% (22/115) were severe cases (T2* < 10 ms). The mean pancreas T2* value was 11.12 ± 11.20 ms, and 83.5% of patients had pancreatic iron deposition (T2* < 21 ms). There was significant curvilinear and inverse correlation between liver T2* magnetic resonance imaging and hepatic iron concentration (r= -0.878; p < 0.001) and moderate correlation between pancreas and myocardial T2* MRI (r = 0.546; p < 0.0001). Conclusion: A high rate of hepatic, pancreatic and cardiac impairment by iron overload was demonstrated. Ferritin levels could not predict liver, heart or pancreas iron overload as measured by T2* magnetic resonance imaging. Therewas no correlation between liver, pancreas, liver and myocardial iron overload, neither between ferritin and fraction of labile plasma iron with liver, heart and pancreas T2* values.


Objetivo: Avaliar o acúmulo de ferro em diferentes órgãos por meio da ressonância nuclear magnética T2* e correlacionar os resultados aos níveis de ferritina sérica, ferro plasmático lábil e outros órgãos envolvidos. Métodos: Foram avaliados retrospectivamente 115 pacientes talassêmicos (sendo 65 mulheres). A concentração hepática de ferro foi determinada em biópsia de 11 pacientes; os resultados foram comparados com os valores de T2* fígado. Resultados: a ferritina sérica média foi de 2.676,5 +/- 2.051,7 ng/mL. O ferro plasmático lábil foi anormal (> 0,6 Unidades/mL) em 48/83 pacientes (57%). A média dos valores de T2* no fígado foi 3,91 ± 3,95 ms, sugerindo siderose hepática em 92,1% pacientes. A média do T2* cardíaco foi de 24,96 ± 14,17 ms e 36% dos pacientes apresentavam siderose cardíaca (T2* < 20ms), dos quais 19% (22/115) já apresentavam sobrecarga cardíaca grave (T2* < 10 ms). A média de T2* no pâncreas foi de 11,12 ± 11,20 ms, perfazendo um total de 83,5% de pacientes com sobrecarga de ferro pancreático (T2* < 21 ms). Houve correlação significativa, curvilínea e inversa entre T2* fígado e a concentração de ferro hepática (r = -0,878; p <0,001) e correlação moderada entre T2* pâncreas e T2* miocárdio (r = 0,546; p<0,0001). Conclusão: Uma elevada taxa de acometimento hepático, pancreático e cardíaco por sobrecarga férrica foi demonstrada. Os níveis de ferritina não puderam prever sobrecarga de ferro hepático, cardíaco ou pancreáticos medidos por meio da ressonância nuclear magnética T2*. Não houve correlação entre a sobrecarga de ferro no fígado, pâncreas e miocárdio, nem entre a ferritina e os níveis plasmáticos de ferro sérico e os valores de T2* no fígado, coração e pâncreas.


Subject(s)
Biopsy , Blood Transfusion , Iron Overload , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL